A Family of Scalable Polynomial Multiplier Architectures for Ring-LWE Based Cryptosystems
نویسندگان
چکیده
Many lattice based cryptosystems are based on the Ring learning with errors (Ring-LWE) problem. The most critical and computationally intensive operation of these Ring-LWE based cryptosystems is polynomial multiplication over rings. In this paper, we exploit the number theoretic transform (NTT) to build a family of scalable polynomial multiplier architectures, which provide designers with a trade-off choice of speed vs. area. Our polynomial multipliers are capable to calculate the product of two n-degree polynomials in about (1.5n lgn+1.5n)/b clock cycles, where b is the number of the butterfly operators. In addition, we exploit the cancellation lemma to reduce the required ROM storage. The experimental results on a Spartan-6 FPGA show that the proposed polynomial multiplier architectures achieve a speedup of 3 times on average and consume less Block RAMs and slices when compared with the compact design. Compared with the state of the art of high-speed design, the proposed hardware architectures save up to 46.64% clock cycles and improve the utilization rate of the main data processing units by 42.27%. Meanwhile, our designs can save up to 29.41% block RAMs.
منابع مشابه
Provably Weak Instances of Ring-LWE
The ring and polynomial learning with errors problems (Ring-LWE and Poly-LWE) have been proposed as hard problems to form the basis for cryptosystems, and various security reductions to hard lattice problems have been presented. So far these problems have been stated for general (number) rings but have only been closely examined for cyclotomic number rings. In this paper, we state and examine t...
متن کاملHigh-Performance Ideal Lattice-Based Cryptography on 8-Bit ATxmega Microcontrollers
Over the last years lattice-based cryptography has received much attention due to versatile average-case problems like Ring-LWE or Ring-SIS that appear to be intractable by quantum computers. But despite of promising constructions, only few results have been published on implementation issues on very constrained platforms. In this work we therefore study and compare implementations of Ring-LWE ...
متن کاملAttacks against search Poly-LWE
The Ring-LWE (RLWE) problem is expected to be a computationally-hard problem even with quantum algorithms. The Poly-LWE (PLWE) problem is closely related to the RLWE problem, and in practice a security base for various recently-proposed cryptosystems. In 2014, Eisentraeger et al. proposed attacks against the decision-variant of the PLWE problem (and in 2015, Elias et al. precisely described and...
متن کاملHardware Architectures proposed for Cryptosystems Based on Hyperelliptic Curves
Security issues play an important role in almost all modern communication and computer networks. The foundation of IT security are cryptographic systems, for example hyperelliptic curves cryptosystems (HECC). The advantage of HECC is that they allow encryption with shorter operands and at the same time, they provide the same level of security as other public-key cryptosystems, based on the inte...
متن کاملRing-LWE: Applications to Cryptography and Their Efficient Realization
The persistent progress of quantum computing with algorithms of Shor and Proos and Zalka has put our present RSA and ECC based public key cryptosystems at peril. There is a flurry of activity in cryptographic research community to replace classical cryptography schemes with their post-quantum counterparts. The learning with errors problem introduced by Oded Regev offers a way to design secure c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016